
Run-Time Reconfigurable Digital Core 

Testing for Biomedical Instrumentation

Mohammad El-Kadri (melkadri@site.uottawa.ca)

Mohammed Elbadri (melbadri@site.uottawa.ca)

Rami Abielmona (rabielmo@site.uottawa.ca)

Voicu Groza (groza@site.uottawa.ca)

University of Ottawa

School of Information Technology and Engineering 

TEXPO 2005 - October 13, 2005

ERACE ERACE –– Embedded Research Architectures for CoEmbedded Research Architectures for Co--Design EnvironmentsDesign Environments

GEMS GEMS –– Group of Embedded Group of Embedded MicroSystemsMicroSystems



1. Introduction

� What is reconfigurable computing ?
� Adds the ability for the hardware to be changed or 

reconfigured during execution

� What is run-time reconfiguration (RTR) ?
� Combines characteristics of co-processors with those 

of reconfigurable computing

� What is digital testing ?
� Describes circuit behavior when faults occur

� What is fault-injection testing ?
� A fault model which uses Line Stuck-At (LSA) faults



2. Testing Strategies

1. Software
� Common method used to prototype 

fault models

� Does not pay much attention to 
real-time details

2. Sequential Compile Time 
Reconfiguration (CTR)
� Equivalent to the contemporary 

methods used to test circuits

� Performed after the synthesis and 
mapping steps

Figure 1. Hardware 

Test Architecture

3. Parallel CTR
� Here, the FSM does not inject any 

faults into the CUT

� The faults are already synthesized 
into the circuit!

� Requires n * m * 2 CUTs

4. Sequential RTR
� The CUT itself is reconfigured at 

run-time (hence no FIMs!)

� Innovative fault-injection 
technique!



3. Fault-Injection Multiplexers

� Attached to mutually 

exclusive wires

� Introduces a stuck-at-0 

or a stuck-at-1 signal 

onto the line depending 

on the select signal

� Increases the area of 

the CUT, hence, should 

be avoided!

Figure 2. Fault Injection Scheme in 
Hardware



REAE

µBA

LMA

µBR

LMR

RPU

OMA

Com

Bus

OMR

MAB

4. ERACE Initial System Architecture

Figure 3. Initial Architecture

IBM OPB

Runs software

instructions

Controls RTR

of RPU

Execution unit

of HBs

Stores HB 

bitstreams

Stores program

and data code Allows dedicated 

OM
A
-RPU access



5. ERACE Final System Architecture

Figure 4. Final Architecture

IBM OPB

Runs software

instructions

Controls RTR

of RPU

Execution unit

of HBs

Buffers

bitstreams

Stores 

application data

OPB_R

OM

AE RERPU

OMR

OPB_RPUOPB_A

EM EM

FSL Bus

External 

Memory

Stores HB 

bitstreams



Application
C Code

Profiler

Partitioner

Application
Flow C Code

Reconfiguration
Flow C Code

C Compiler

AE RE

JIT Compiler

Synchronizer

HW
Libraries

6. Just-In-Time Compiler

Figure 5. JIT Compiler

Identifies

SW hot-spots

Divides functions

to HW & SW

Syncs-up

AF & RF

Executing on µB
A

Executing on µB
R



7. RPU Architecture

� Allows for simultaneous 

HB execution

� Utilizes its own bus in 

order to avoid a 

bottleneck on other buses

� FSL interfaces provide 

access to HB registers

� LM
RPU

for HB-to-HB 

communication

...

...

OPB_RPU

FSL_AtoRPU

FSL_RPUtoA

HB HB

FSL Interface

...

RPU

LMRPU

F
S

L
 I

n
te

r
f
a
c
eFSL_RtoRPU

FSL_RPUtoR

OM

...

...

...

...

HB

Figure 6. RPU Architecture



Figure 7. HB Architecture

Input buffer (I-Buffer): stores all incoming 
data that has been read from the 
OMA located in the AE

Output buffer (O-Buffer): stores all 
outgoing data received from the 
Packer unit

Interface (I/F) module: consists of several 
addressing registers; status and 
control registers (S/C) that hold all 
the status and control flags as well 
as a priority register

Processing Element (PE): processes the 

incoming data in order to fulfill a 

predefined task

Packer: assembles all data sent from the 

PEs prior to forwarding this 

information to the O-Buffer once the 

buffer-write signal is granted by the 

CU

Dispatcher: receives all the data from the I-

Buffer and dispatches this 

information to various PEs for 

processing

Control Unit (CU): performs several 

operations to ensure proper 

synchronization amongst different 

units

8. Hardware Block (HB) Architecture



� Flagship product of BioSign Corporation

� Data Acquisition System
� Microcontroller

� Pump (cuff)

� Pressure Sensor

� Interfaces to a centralized server where calculations are 
performed
� Pulse rate, blood pressure, pulse pressure, mean arterial 

pressure, and can detect arrhythmia

� Can detect if there is too much noise and interference to acquire 
accurate readings 

� Can store electronic health records to be used as an aid in 
diagnostic and disease management by doctors

� The signal database can also be used in drug research and 
clinical studies, a market BioSign is targeting in the short-term

9. User Fully Integrated Terminal (UFIT)



� We are developing a digital core testing 
environment, starting with benchmark digital circuits 
and moving to more complex digital cores (such as 
those from BioSign)

� A possible future application-scenario might be:
� When the measuring process starts, the FPGA contains an 

HB that tests if the UFIT is operational

� If UFIT is sane, the current HB is replaced by another one 
which checks the integrity of the acquired signal

� If the patient's pulse can be measured (i.e., passed the test 
of signal integrity), another HB for the pulse acquisition can 
be uploaded (cleaning artifacts, filters, etc.) 

10. RTR and UFIT



11. Preliminary Results

� Clock cycle execution time 
comparison on MicroBlaze 
running Micrium’s uC/OS-II

� CUTTask: operation of a 
combinational circuit

� CUTTaskCompress: operation of 
a compressor appended to 
CUTTask circuit

� MULTTask: 10 by 10 matrix 
multiplication

� FFTTask: 8 by 2 matrix FFT

� LEDFlashTask: Flash LED

� Note that the software 
multiplication task consumes the 
most processing resources

� Ideal for HB partitioning!

10%

4%

79%

1% 6%

CUTTask

CUTTaskCompress

MULTTask

LEDFlashTask

FFTTask

Figure 8. Clock Cycle Distribution



12. Conclusion

� A digital core testing environment capable of handling 

variant functions at run-time

� Implemented on a system-on-chip (SoC) with

� A soft-core microprocessor handling all real-time deadlines

� A reconfigurable processing unit allowing for the parallel 

execution of multiple hardware functional units

� Just-in-time compiler manages both application and 

reconfiguration flows

� Used in testing complex digital circuits and simple cores

� Mainstream integration into BioSign’s UFIT next design



13. Team Member Contributions

� Voicu Groza

� Supervising professor and research lab director

� Rami Abielmona

� Ph.D. student prime on system integration

� Mohammed Elbadri

� M.A.Sc. student prime on RPU and HB architecture

� Mohammad El-Kadri

� M.A.Sc. student prime on JIT compiler



14. Acknowledgements

• The authors gratefully acknowledge the assistance 
and contribution of the Canadian Microelectronics 
Corporation (CMC) in providing top-of-the-line 
workstations and prototyping platforms

• The authors would also like to acknowledge BioSign
Corporation (http://www.biosign.com/) for their cooperation 
in providing details about the UFIT device

References provided upon request

THANK YOU!

Comments/Questions ?


