Run-Time Reconfigurable Digital Core Testing for Biomedical Instrumentation

Mohammad El-Kadri (melkadri@site.uottawa.ca)
Mohammed Elbadri (melbadri@site.uottawa.ca)
Rami Abielmona (rabielmo@site.uottawa.ca)
Voicu Groza (groza@site.uottawa.ca)
1. Introduction

- What is reconfigurable computing?
 - Adds the ability for the hardware to be changed or reconfigured during execution

- What is run-time reconfiguration (RTR)?
 - Combines characteristics of co-processors with those of reconfigurable computing

- What is digital testing?
 - Describes circuit behavior when faults occur

- What is fault-injection testing?
 - A fault model which uses Line Stuck-At (LSA) faults
2. Testing Strategies

1. Software
 - Common method used to prototype fault models
 - Does not pay much attention to real-time details

2. Sequential Compile Time Reconfiguration (CTR)
 - Equivalent to the contemporary methods used to test circuits
 - Performed after the synthesis and mapping steps

3. Parallel CTR
 - Here, the FSM does not inject any faults into the CUT
 - The faults are already synthesized into the circuit!
 - Requires $n \times m \times 2$ CUTs

4. Sequential RTR
 - The CUT itself is reconfigured at run-time (hence no FIMs!)
 - Innovative fault-injection technique!
3. Fault-Injection Multiplexers

- Attached to mutually exclusive wires
- Introduces a stuck-at-0 or a stuck-at-1 signal onto the line depending on the select signal
- Increases the area of the CUT, hence, should be avoided!

Figure 2. Fault Injection Scheme in Hardware
4. ERACE Initial System Architecture

Figure 3. Initial Architecture
5. ERACE Final System Architecture

Figure 4. Final Architecture
6. Just-In-Time Compiler

Identifies SW hot-spots

Divides functions to HW & SW

Executing on μB_A

Executing on μB_R

Figure 5. JIT Compiler
7. RPU Architecture

- Allows for simultaneous HB execution
- Utilizes its own bus in order to avoid a bottleneck on other buses
- FSL interfaces provide access to HB registers
- L_{RPU} for HB-to-HB communication

Figure 6. RPU Architecture
8. Hardware Block (HB) Architecture

Input buffer (I-Buffer): stores all incoming data that has been read from the OMA located in the AE

Output buffer (O-Buffer): stores all outgoing data received from the Packer unit

Interface (I/F) module: consists of several addressing registers; status and control registers (S/C) that hold all the status and control flags as well as a priority register

Processing Element (PE): processes the incoming data in order to fulfill a predefined task

Packer: assembles all data sent from the PEs prior to forwarding this information to the O-Buffer once the buffer-write signal is granted by the CU

Dispatcher: receives all the data from the I-Buffer and dispatches this information to various PEs for processing

Control Unit (CU): performs several operations to ensure proper synchronization amongst different units

Figure 7. HB Architecture
9. User Fully Integrated Terminal (UFIT)

- Flagship product of BioSign Corporation
- Data Acquisition System
 - Microcontroller
 - Pump (cuff)
 - Pressure Sensor
- Interfaces to a centralized server where calculations are performed
 - Pulse rate, blood pressure, pulse pressure, mean arterial pressure, and can detect arrhythmia
 - Can detect if there is too much noise and interference to acquire accurate readings
 - Can store electronic health records to be used as an aid in diagnostic and disease management by doctors
 - The signal database can also be used in drug research and clinical studies, a market BioSign is targeting in the short-term
10. RTR and UFIT

- We are developing a digital core testing environment, starting with benchmark digital circuits and moving to more complex digital cores (such as those from BioSign).

- A possible future application-scenario might be:
 - When the measuring process starts, the FPGA contains an HB that tests if the UFIT is operational.
 - If UFIT is sane, the current HB is replaced by another one which checks the integrity of the acquired signal.
 - If the patient's pulse can be measured (i.e., passed the test of signal integrity), another HB for the pulse acquisition can be uploaded (cleaning artifacts, filters, etc.)
11. Preliminary Results

- Clock cycle execution time comparison on MicroBlaze running Micrium’s uC/OS-II
 - CUTTask: operation of a combinational circuit
 - CUTTaskCompress: operation of a compressor appended to CUTTask circuit
 - MULTTask: 10 by 10 matrix multiplication
 - FFTTask: 8 by 2 matrix FFT
 - LEDFlashTask: Flash LED

- Note that the software multiplication task consumes the most processing resources
 - Ideal for HB partitioning!

Figure 8. Clock Cycle Distribution
12. Conclusion

- A digital core testing environment capable of handling variant functions at run-time
- Implemented on a system-on-chip (SoC) with
 - A soft-core microprocessor handling all real-time deadlines
 - A reconfigurable processing unit allowing for the parallel execution of multiple hardware functional units
- Just-in-time compiler manages both application and reconfiguration flows
- Used in testing complex digital circuits and simple cores
- Mainstream integration into BioSign’s UFIT next design
13. Team Member Contributions

- Voicu Groza
 - Supervising professor and research lab director
- Rami Abielmona
 - Ph.D. student prime on system integration
- Mohammed Elbadri
 - M.A.Sc. student prime on RPU and HB architecture
- Mohammad El-Kadri
 - M.A.Sc. student prime on JIT compiler
14. Acknowledgements

- The authors gratefully acknowledge the assistance and contribution of the Canadian Microelectronics Corporation (CMC) in providing top-of-the-line workstations and prototyping platforms.
- The authors would also like to acknowledge BioSign Corporation (http://www.biosign.com/) for their cooperation in providing details about the UFIT device.

THANK YOU!

Comments/Questions?

References provided upon request